Startowa
Do nadrzędnej
Nowości
English
Komunikaty
Pro
Anty
English articles
O nas
Współpraca
Linki
Polecamy
Ściągnij sobie
Zastrzeżenie

 
Mleko  - dobre czy złe

Cytuję artykuł lek. med. Katarzyny Świątkowskiej opublikowany na Facebooku,

Zobacz też tutejsze wcześniejsze inne artykuły o mleku jak: Pij mleko - będziesz kaleką, Bomba witaminowa czy ...


Mleko jest niemodne. Mleko jest złe dla dorosłych
Argumenty zwolenników tej teorii?
Żaden dojrzały ssak nie pije mleka
Sorry.
Nie przemawia to do mnie

Spójrzmy prawdzie w oczy. Żaden inny ssak, poza człowiekiem, nie chadza w butach. Ja uwielbiam fajne szpilki czy sneakersy. Nie porzucę radości z ich posiadania dlatego, że krowy nie pomykają w szpilkach po łące

Też żaden ssak poza człowiekiem nie pija smoothie ze szpinaku, jagód i mleka sojowego ( …mniam, mniam, pycha). Polecam. Wystarczy to wszystko razem zmielić w blenderze. Mało kalorii, ogrom cennych składników. Choćby te jagody- genialnie poprawiają, nie tylko wzrok, ale i pamięć (1,2) . Wprawdzie, niektórzy twierdzą, że świat jest piękniejszy gdy jedno i drugie nie są takie za idealne… choć ja tam nie wiem, bo nie znam na ten temat badań 😉

Dobra, tak na serio

co do mleka, to rzeczywiście, w świetle dowodów naukowych słodkie MLEKO dorosłym niekoniecznie służy.Natomiast, fermentowany nabiał niesie wiele korzyści dla zdrowia. Poniżej przytaczam sensacyjne, mocne, badania, tylko z recenzowanych pism, z ostatnich lat.Sama byłam w lekkim szoku..

Po pierwsze

Ciągle to słyszymy: „Chcesz mieć zdrowe kości- pij więcej mleka!”. Nabiał ma witaminy D, A, B2, B12, potas, fosfor, magnez, cynk, wszystkie tak ważne dla szkieletu (3-6), może zapewnić do 60% zalecanego dziennego spożycia wapnia, fermentowane produkty mleczne są źródłem witaminy K. (33,34). Autorytety zdrowotne twierdzą, że spożycie mleka w ilości 3-4 szklanek dziennie mogłoby zaoszczędzić co najmniej 20% kosztów opieki zdrowotnej związanych z osteoporozą (7). Czyż to nie brzmi pięknie?

Niestety,

tak jest tylko w teorii. I wcale nie chodzi o laktozę. Zresztą, o modnym trendzie „lactose-free” promowanym z niezmąconą cieniem wątpliwości pewnością siebie przez niektórych dietetyków, czy celebrytów, będzie w następnym artykule. '

Pewnie, jeśli ktoś nie trawi laktozy ,
to bez sensu , żeby nią się karmił. Jednak, wokół tej nieszczęsnej laktozy, narosło dużo mitów. Rozprawimy się z nimi w następnym artykule. Dzisiaj o składnikach mleka, które odpowiadają za to, że mleko już nie jest dalej uważane za "TYLKO JEDZENIE"

Niedawne głośne badanie: „Mleko niesfermentowane i inne produkty mleczne: Związki ze śmiertelnością ogólną” w „The American Journal of Clinical Nutrition” z 2017 roku. 103 256 dorosłych z północnej Szwecji, obserwacja ponad 13 lat. Najwięksi fani słodkiego mleka (tzn nie posłodzonego, lecz NIE poddanego fermentacji), sięgający po nie ≥2,5 razy / dobę mieli większe o 32% ryzyko zgonu w czasie obserwacji w porównaniu z osobami unikającymi tego napoju.

Za to, picie mleka sfermentowanego (=kefiry, jogurty, mleko zsiadłe) było OK (!!!). Zanotowano o 10% MNIEJSZE ryzyko zgonu wśród regularnie je spożywających, wśród regularnie jedzących sery- o 7% niższe (8)

Uwzględniono ważne czynniki mogące zakłócić wyniki jak wiek, płeć, masę ciała, palenie tytoniu, wykształcenie, spożycie kalorii i aktywność fizyczną. To ważne.

Bo ... statystyczna osoba kupująca sobie regularnie jogurty/kefiry ma zdrowsze nawyki. Więc trzeba wyeliminować pytanie typu: „Jedzący jogurty są zdrowsi. Są zdrowsi bo jedzą jogurty zamiast kiełbasy? Czy jogurt/kefir są same w sobie takie zdrowe”?

2014 rok, British Medical Journal: „Spożycie mleka a ryzyko zgonu i złamań”(9). 61 433 kobiet (około 20 lat obserwacji) i 45 339 mężczyzn (około 11 lat obserwacji). Większe o 93% (!!!) ryzyko zgonu wśród kobiet spożywających trzy lub więcej szklanek mleka dziennie niż kobiet pijących mniej niż jedną szklanką mleka dziennie.

U kobiet pijących regularnie mleko zaobserwowano CZĘSTSZE złamania biodra – o 9% przy 1 szklance, o 5% przy dwóch, o 13% przy trzech. Zaobserwowano dodatnie powiązanie pomiędzy spożyciem mleka i 8-izo-PGF2α w moczu (biomarkerem ilości wolnych rodników) i interleukiną 6 surowicy (główny biomarker zapalny). Fakt, zwolenników słodkiego mleka łączyła też większa statystycznie waga, miłość do słodyczy, częściej palili papierosy (18)

Szwecja zajmuje czwarte miejsce na świecie (17) pod względem spożycia mleka „na głowę”, pewnie dlatego sporo badań było tam przeprowadzanych. Spośród dziewięciu (8-16) pięć potwierdziło brak lub ochronny wpływ spożywania nabiału na zagrożenie zawałami i udarami (10-13). Inne- te przytoczone powyżej-wręcz przeciwnie. Sugerują, że dla dorosłych mleko wcale nie jest takim dobrodziejstwem. W jednym badaniu wykazano też wyższą śmiertelność u osób jedzących dużo masła, a mniejszą wśród regularnie konsumujących sery (8).

Doniesienia dotyczące dorosłych są totalnie sprzeczne.

Mamy wiele badań, w których stwierdza się, że wysokie spożycie mleka i produktów mlecznych wiąże się ze zmniejszoną śmiertelnością , niezmienioną śmiertelnością, a nawet zwiększoną śmiertelnością, czy ryzykiem złamań (19-23)

No i co myśleć?

Po pierwsze. Mleko służy dzieciakom. Pomaga rosnąć i budować szkielet. Dorosłym (słodkie), niekoniecznie.

Jedno, czy dwa latte dziennie nie zaszkodzi, większa ilość może już nie być taka OK. (Mówiąc o mleku mamy na myśli krowie, bo napoje z ryżu czy z soi mlekiem nazywać się nie powinny)

Po drugie.
W świetle dowodów naukowych (oczywiście, przytoczonych poniżej) – na zdrowie dorosłych zupełnie inaczej wpływa mleko słodkie niż napoje/produkty z mleka fermentowanego. Drobnoustroje w nich mieszkające poprawiają żywotność „dobrych” mikroorganizmów w naszych jelitach, co chroni nas nie tylko przed problemami z przewodem pokarmowym, lecz i przed ogólnoustrojowym stanem zapalnym (27), który przyczynia się do wielu chorób, od miażdżycy do raka

Jeśli mleko zostanie „przerobione” przez bakterie i z niego powstanie kefir, jogurt, ser, to staje się czymś zdrowszym. Bakterie przeprowadzające fermentację „zjadają” to co wydaje się być szkodliwe (o tym za chwilę), a zamiast tego produkują aktywne substancje pomagające nam czuć się lepiej

To jest zmiana w spojrzeniu.

Kiedyś myślano, że to, co w kefirach, jogurtach, mleku zsiadłym najcenniejsze, to PRObiotyki. Tylko, kupując kefir/jogurt w sklepie raczej nie powinniśmy mieć złudzeń, że ich zawartość (bo te mikroby wg definicji PROBIOTYKÓW to mają być żywe, w odpowiedniej ilości, odporne na atak enzymów trawiennych) jest nieokreślona, nie badana, i najprawdopodobniej… hm… niewielka. I badania to potwierdzały (24).

Dobra wiadomość
Te bakterie/grzybki nie muszą być takie żywotne. Nie jest ważne czy w Twoim jogurcie błąka się kilka żywych pożytecznych drobnoustrojów czy jest tam ich cała armia, tylko czekająca na to, by poprawić stan Twojego zdrowia

Wystarczy, że już zadziałały
Sfermentowały i zmieniły mleko. I ono już nigdy nie będzie takie samo. Pozostawiły po sobie mnóstwo bioaktywnych peptydów, CLA, i inne związki (25,28). Zredukowały ilość tych niekoniecznie dobrych (26).
To tłumaczy wyniki poniższych badań (głównie obserwacyjnych)

Mleko a cukrzyca
Masz „za wysoki cukier”? Zaprzyjaźnij się z jogurtem! Bakterie fermentacji mlekowej uwalniają bioaktywne peptydy pomagające w tym (35-43). Inny fermentowany nabiał (np.kefir) nie był tak przebadany, jednak też wydaje się działać korzystnie (56)

Największym badaniem było EPIC z udziałem 340,234 osób. Spożywanie fermentowanego mleka i fermentowanych produktów mlecznych OBNIŻAŁO ryzyko wystąpienia cukrzycy II typu, za to spożycie mleka słodkiego związane było ze ZWIĘKSZONYM ryzykiem tej choroby (29).

W badaniu PREDIMED (2017 r) spożycie sera i masła wiązało się z WYŻSZYM ryzykiem cukrzycy II typu, podczas gdy spożycie jogurtu się z NIŻSZYM ryzykiem (30).

W innym badaniu- ponad 5 porcji mleka słodkiego na tydzień znacznie ZWIĘKSZAŁO ryzyko wystąpienia stanu przedcukrzycowego (32).

Za to, sfermentowane produkty mleczne pomagały obniżać poziom glukozy w osoczu na czczo u pacjentów z cukrzycą II typu (248,249)
Badanie zdrowia 21 660 lekarzy wykazało znaczny WZROST ryzyka cukrzycy II typu i raka prostaty przy regularnym spożywaniu mleka pełnotłustego (31).

Fakt, w niektórych badaniach nie doszukano się związku między spożyciem jakiegokolwiek nabiału a ryzykiem cukrzycy II typu (33,34)

Osteoporozę
opisuje się jako "chorobę dziecięcą z konsekwencjami w dojrzałym życiu". To, na ile jesteśmy nią zagrożeni, zależy mocno od kapitału jaki został zgromadzony przed 20 r.ż. i od tempa jego utraty po 30 rż. (52,53)

Kości
są jak konto bankowe, gdzie dokonuje się "depozytów" i "wypłat". Dziewczęta do 90% szczytowej masy kostnej nabywają do 18 roku życia, chłopcy- do 20 rż. To czas inwestowania szkielet- buduje się kapitał na całe życie

Warto to wiedzieć. 60-80% szczytowej masy kostnej zależy od genów, 30-40% od diety, aktywności fizycznej, niepalenia papierosów (101-103). Po trzydziestce konto zaczyna już tylko topnieć. Jak jest bardzo niskie- dochodzi do złamań

Wiele badań obserwacyjnych i co najważniejsze - wszystkie próby interwencyjne polegające na rozpoczęciu podawania nabiału dzieciom i monitorowaniu stanu ich kości wykazały poprawę (106-114)

I wprost przeciwnie- u dorastających dzieci długotrwałe unikanie mleka wiąże się z mniejszym wzrostem, niższą masą mineralną kości i zwiększonym o około 2,7 razy ryzykiem złamań przed osiągnięciem dojrzałości płciowej (104,105)

Dobra, zaznaczmy jednak, że u dzieci, z wyjątkiem tych o bardzo niskim spożyciu wapnia, spożycie magnezu może być ważniejsze dla rozwoju kości (91), i że wpływ nabiału na szkielet i dorosłych i dzieci to może zależeć od poziomu witaminy D w ciele (57).

W każdym razie, większe spożycie mleka w okresie dzieciństwa i dorastania przyczynia się do większej szczytowej masy kostnej i dlatego oczekuje się, że pomoże uniknąć osteoporozy i złamań kości w późniejszym życiu.

No i co?

Fakt, niektóre obserwacje to potwierdzały- np. kobiety, które w okresie dzieciństwa piły mało mleka miały dwukrotnie większe ryzyko złamania po 50 rż (62). Za to, w innym badaniu zaobserwowano znaczny wzrost ryzyka o 9% u mężczyzn w przypadku każdej dodatkowej szklanki mleka spożywanego dziennie w ciągu lat młodzieńczych (63). Dowody na zmniejszenie ryzyka złamania kości udowej w wieku dojrzałym ludzi pijących dużo mleka w dzieciństwie nie są za mocne

A jeszcze bardziej wątłe na to, że picie mleka przez DOROSŁYCH zmniejsza u nich ryzyko złamań osteoporotycznych (23,61)

Niektóre badania dotyczące dorosłych sugerują, że warto pić mleko by się nie połamać (64,67), inne- że wręcz przeciwnie, mleko zwiększa ryzyko złamań (66). Inne, że do 200ml/dz jest ok, więcej- może niekoniecznie (65).

No i znowu. Sfermentowane mleko i ser w porównaniu z mlekiem niefermentowanym wywiera działanie ochronne przed złamaniami i poprawia stan kości (90,97-100)

"Pij mleko - będziesz wielki!"
Białka mleka zwiększają wątrobową produkcję IGF-1, a to główny regulator wzrostu u ludzi (134,453). Do tego, mleko samo w sobie też zawiera duże ilości hormonów stymulujących wzrost, jak właśnie IGF-1, które mamy w nim nawet po pasteryzacji (131)

Skład, kolejność aminokwasów IGF-1 są takie same w mleku ludzkim jak i w krowim. IGF-1 z mleka krowiego może wnikać z przewodu pokarmowego i potem wiązać się z ludzkim receptorem dla niego (132,133)

Konsumpcja mleka przez małe dzieci zwiększa wysokość ciała (84-89). U dziewcząt otrzymujących mleko w szkole przez 2 lata, w porównaniu z grupą kontrolną, zanotowano znacznie wyższy przyrost wysokości, masy ciała, masy kostnej (68).
Dzieci, którym nie podaje się mleka są niższe (69-76). Im dłużej spożywają „mleko” roślinne, tym są niższe, (statystycznie, oczywiście) (77)

Picie mleka przez ciężarną kobietę
wiąże się z większą masą urodzeniową potomka (78,79). Dieta bogata w nabiał, zielone warzywa liściaste, owoce, stosowana przez kobiety w ciąży wiąże się ze zwiększoną masą / gęstością kości u ich potomstwa (80-83). Uzupełnienie nabiałem i suplementami wapnia w czasie ciąży skutkowało większą masą noworodka i lepszą mineralizacją jego kości (83)

Jeśli już o kościach dzieci…warto zachęcać je do uprawiania sportu. To wzmacnia nie tylko ich kości, ale i MÓZG (54,55).

Rak jelita grubego.
Spożywanie mleka słodkiego może być pomocne dla osób zagrożonym rakiem jelita grubego (115-127) .

W jednym z badań zauważono, że pacjenci, którzy nie piją mleka z powodu nietolerancji laktozy, mają zwiększone ryzyko raka okrężnicy (117).

Dowodów mamy dużo więcej, choćby metaanaliza (15 badań, 900 000 pacjentów) wykazała mniejsze o 26% ryzyko raka okrężnicy u mężczyzn (i tylko mężczyzn) spożywających ok. pół litra słodkiego mleka/dz. Nabiał sfermentowany ani sery tutaj akurat nic, a nic, nie chroniły (118). Ostatnie doniesienia sugerują odwrotną zależnością między spożyciem mleka a ryzykiem raka żołądka (128)

Mleko a trądzik, rak prostaty, choroba Parkinsona.

Tu nie ma optymistycznych wieści. Mleko zwiększa szansę „załapania się” na nie

W 8-letniej obserwacji pacjentów z nadwaga, z BMI>27, po leczeniu raka prostaty i spożywających > 4 porcji na tydzień ryzyko nawrotu było 3-krotnie większe. (137)

Duże spożycie mleka w okresie dorastania zwiększa ryzyko tej choroby w późniejszym życiu (130). Później- też (133-136).Sugeruje się, że mechanizm polega na tym, że po mleku wątroba produkuje nam więcej pewnego hormonu- IGF-1 , który pomaga dzieciom rosnąć, jednak u dorosłych zwiększa ryzyko raka gruczołu krokowego (138-141). Ten hormon jest też ZAWARTY w mleku słodkim, ale jego ilość w jogurtach może się zmniejszyć podczas przechowywania i fermentacji (142)

Choć dodajmy, że w badaniu EPIC osoby unikające mleka z powodu nietolerancji laktozy wcale nie chorowały rzadziej na raka gruczołu krokowego (129),

Picie mleka sprzyja trądzikowi (148,149), bo wpływa na hormony w ciele (143-145) . Za główny mechanizm „trądzikotwórczego” działania mleka uważa się zwiększenie wytwarzania IGF-1 przez wątrobę spowodowane jego aminokwasami. Poza tym, mleko ma sporo glutaminy, która w gruczołach łojowych pobudza podziały komórek i tworzenie łoju (146)

Jogurty i ser nie wydają się cerze szkodzić.
W metaanalizie z 2018 wykazano pozytywny (nie dla chorujących nastolatków) związek między spożywaniem mleka a trądzikiem. W przeciwieństwie do tego, nie zaobserwowano wpływu jogurtu / sera na rozwój/przebieg tej choroby (147).

Na marginesie- dieta o niskim ładunku glikemicznym pomaga leczyć trądzik (150).

Pijący dużo mleka CZĘŚCIEJ zapadają na chorobę Parkinsona (44-51).

Analizy oparte na danych z 2 wielkich i słynnych badań Nurses’ Health Study oraz Health Professionals Follow-up Study potwierdziły zwiększone ryzyko tej choroby u osób pijących regularnie słodkie mleko. Duża metaanaliza wykazała liniową zależność - każde 200 g / dobę więcej mleka powodowało wzrost o 17% ilości zachorowań na chorobę Parkinsona. Inne badanie. Osoby pijące dużo mleka miały o 45% większe szanse na tę chorobę, jedzące regularnie sery - o 26% d. Za to, ryzyko już było MNIEJSZE o 5% w przypadku konsumowania jogurtu i 24% dla masła (47)

Alergie
Karmienie piersią zmniejsza ryzyko wystąpienia alergii u dziecka, jest najskuteczniejszą profilaktyką astmy alergicznej w dzieciństwie (151-156)
Mleko krowie jest najczęstszym alergenem pokarmowym wśród dzieci, u tych nie uczulonych – jeśli podaje je niepasteryzowane- chroni przed alergią (158-170)

Naukowcy z Uniwersytetu Medycznego we Wrocławiu opisali badanie 1700 dzieci z małego miasteczka i siedmiu pobliskich wiosek w południowo-zachodniej Polsce. Spożycie niepasteryzowanego mleka w pierwszym roku życia było z rzadszym o 56% występowaniem atopowego zapalenia skóry, o 49% rzadszym pojawieniem się astmy (157). W innych badaniach podobne. Spożycie surowego mleka wiązało się z rzadszym o około 50% występowaniem astmy, atopii.

Gotowane mleko "prosto od krowy" nie wykazywało efektu ochronnego.

Nie wiadomo dokładnie które składniki surowego mleka są odpowiedzialne. Mogą to być immunoglobuliny, laktoferyna itp. (171-175). Tak, kolejny dowód na to, że mleko krowie to nie tylko pokarm. Ma też w sobie np. transformujący czynnik wzrostu beta, TGF-β (176-180), który wpływa na układ odpornościowy i ochronę przed alergiami we WCZESNYM DZIECIŃSTWIE (183,184). TGFβ1 są identyczne u krów i u ludzi (181). Stężenie TGFβ1 w mleku krowim zmniejsza się znacząco po przetworzeniu (182)

Uściślijmy.
Surowe mleko krowie może zawierać chorobotwórcze, nawet śmiercionośne drobnoustroje dlatego ryzykowne jest po niego sięgać. Osoby podające je dzieciom chyba nie wierzą, że bakterie mogą istnieć, jeśli ich nie widać. Nie warto ryzykować. Co komu po tym, że będzie martwym nie-alergikiem?

EGZOSOMY mleka.

Brzmi jak science fiction, jednak wygląda na to (dowody!!!), że materiał genetyczny „sprezentowany” nam w mleku przez krowę może przetrwać trawienie w przewodzie pokarmowym, wniknąć do krwi i krążyć sobie w nas, wpływając na to jakie geny się ujawnią (191-195). Dyskusja pomiędzy naukowcami trwa (188-190).

Mleko matki zapewnia więcej niż tylko odżywianie, zawiera cząsteczki sygnałowe, które umożliwiają komunikację pomiędzy matką a organizmem niemowlęcia. Ciekawe opracowanie w styczniu 2019 roku publikował „Journal of Translational Medicine”:

„Egzosomy mleka pasteryzowanego: potencjalne patogeny chorób” (26)

O co chodzi z tymi „mlecznymi” egzosomami? W świetle ostatnich badań, to ukryty bioaktywny składnik mleka krowiego (250,254)

Maksymalnie upraszczając, wygląda to tak: „Przepis” na nas jest zapisany w DNA. W połowie to co tam posiadamy pochodzi od mamy, w połowie od taty. DNA możemy sobie wyobrazić jako ogromną książkę kucharską, z recepturami nie na serniki czy jabłeczniki, ale na białka. Jeden „przepis” to jeden gen. Każda komórka ciała przechowuje w sobie kompletną książkę kucharską . Nie wszystkie przepisy są dla niej przydatne, bo przecież innych przepisów potrzebują komórki wątroby, innych- nerek, pomimo, że „książki” mają identyczne

Przepisy w tej „książce kucharskiej” są zaszyfrowane. Żeby mogły się zrealizować, szyfr musi być tłumaczony na „kod kreskowy”, którym są komunikaty RNA (mRNA). Kiedy on powstanie, do akcji wkraczają maleńkie fabryki białek=rybosomy. „Skanują” ten kod i na podstawie niego tworzą białka, które nas budują i regulują

Wśród przepisów w DNA mamy przepisy-śmieci. Nic dobrego na ich podstawie nie powstanie. Są np. za krótkie. Musi istnieć system kontroli tego które przepisy mają być otwierane a które wcale nie, bo tylko można stracić (jak ze złym przepisem na ciasto- można tylko stracić czas i składniki)
Funkcję kontrolerów pełnią bardzo krótkie mikroRNA (w skrócie miRN.A)

Aż do 2001 roku były uważane za śmieciowe, bo za krótkie, bo za małe, bez sensu. Dziś wiemy, że miRNA to żadne śmieci, lecz menadżerowie zarządzający tym, które geny, które otrzymaliśmy po przodkach dojdą do głosu, a które zostaną wyciszone (196-198). Mogą regulować nawet 30% wszystkich genów. Wpływają praktycznie na wszystko. Od modelowania mózgu, po otyłość, odporność. Niektóre miRNA pomagają być zdrowym, inne- sprzyjają chorobom.

Jakich więcej powstaje- zależy od tego jak się prowadzimy. Jeśli sięgamy po alkohol, narkotyki- powstają szkodliwe miRNA. Jeśli znajdujemy czas na regularne ćwiczenia, dbamy o wartościową dietę- produkuje się w nas więcej korzystnych miRNA (199-209)

Niektóre są pakowane w specjalne pęcherzyki, noszące nazwę EGZOSOMÓW.

To towar eksportowy komórek (210-223), są jak opancerzone wehikuły rozwożące miRNA po ciele, na długich dystansach. W 2007 r. opisano po raz pierwszy ten fenomen (224). Mamy je we krwi, płynach ustrojowych. Najwięcej w mleku

Do niedawna uważano, że mikroRNA rządzą tym organizmem, które je sobie wytworzył

I UWAGA !!! Tu właśnie nastąpił przełom (w wiedzy).

Dziecko dostaje je z mlekiem karmiącej matki (218). Tak jest u wszystkich ssaków- egzosomy i inne podobne twory są uwalniane z komórek nabłonka gruczołu sutkowego wszystkich ssaków (225-228). Egzosomy mleka kobiecego (i krowiego) przeżywają trawienie i mogą wnikać do komórek jelit, naczyń krwionośnych, potem całego ciała (229). Są opakowane w otoczkę= pancerzyk chroniący przed zniszczeniem w pełnym żrących kwasów i enzymów środowiskiem żołądka i jelit

Kiedy podawano mleko zwierzętom z oznakowanymi specjalnie egzosomami, gromadziły się one w błonie śluzowej ich jelit, w wątrobie, śledzionie i mózgu (239-247). Pasteryzacja skutecznie uśmierca chorobotwórcze drobnoustroje i chroni witaminy i związki bioaktywne np. egzosomy. Za to, fermentacja mleka (zamiana go w jogurt/kefir/mleko zsiadłe) powoduje znaczną utratę miRNA (255). Bakterie "zjadają" egzosomy

Ponad 300 miRNA zostało zidentyfikowanych w egzosomach mleka (230-232), Każdy miRNA jest w stanie rządzić wieloma genami. Sekret leży w ich rozwiązłości. Jedno miRNA może wiązać się z wieloma mRNA i blokować je. Geny są jak marionetki, którymi poruszają miRNA. Dla niemowląt miRNA z mleka matki może odgrywać pomocną rolę w prawidłowym dojrzewaniu jelit, rozwoju mikrobioty i odporności (233-237)

"Pij mleko - będziesz wielki!"

Fakt
W mleku mamy różne czynniki wzrostowe , które są po to, żeby dziecko prawidłowo rosło, więcej jadło. To potrzebne dla jego wzrostu i rozwoju. Dorośli mogą, niestety, tylko rosnąć wszerz. Podawanie mleka zwierzakom laboratoryjnym powoduje wzrost u nich apetytu i tycie (256).

Egzosomy mleka ze swoją zawartością przechodzą przez barierę krew-mózg i docierają do mózgu i mogą tam zakłócać regulację sytości (257-259). Jest możliwe, że egzosomy mleka utrzymują "głodny mózg", aby zwiększyć spożycie mleka w okresie karmienia piersią co jest korzystne dla wzrostu niemowlaka, nie za bardzo dla dorosłych

I na koniec…pozytywnie

Smutno ci?

Może zjedz jogurt!

W jednym z głośnych badań osoby spożywające jogurty 1-4 razy w tygodniu w porównaniu z tymi co ich nie jadali, rzadziej wykazywały objawy depresji. Wyniki pozostały takie same po uwzględnieniu szeregu możliwych „czynników zakłócających”, jak wiek, płeć, ogólna dieta i styl życia oraz stan zdrowia (185).

Czemu?
Otóż, ilość bakterii Lactobacillus zamieszkujących nasze jelita wpływa na poziom we krwi związku zwanego kinureniną. Kinurenina powstaje w trakcie normalnych przemian w ciele i sprzyja rozwojowi depresji (186,187). „Lactobacillusy” hamują pewien enzym (IDO1) w jelicie, jeśli w nim oczywiście mieszkają. To obniża poziom kinureniny i może poprawiać nastrój

Jogurty mają w sobie zarówno „Lactobacillusy”, jak i czynniki sprzyjające ich wzrostowi w jelitach

Przeżywasz stresy?

Zjedz jogurt!

W czasie stresu spada poziom Lactobacillus, to zwiększa poziom kinureniny we krwi, ona łatwo przekracza barierę krew-mózg, wywołuje depresję zakłócając równowagę neuroprzekaźników (186)

cdn.
[ dopisek: są to artykuły Laktoza, gluten itp. oraz Nietolerancje pokarmowe ]

Źródła cytowane

1. Joanna L. Bowtell, Zainie Aboo-Bakkar, Myra Conway, Anna-Lynne R. Adlam, Jonathan Fulford. Enhanced task related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Applied Physiology, Nutrition, and Metabolism, 2017;
2. Rodriguez-Mateos A., Rendeiro C., Bergillos-Meca T., Tabatabaee S., George T.W., Heiss C., Spencer J.P. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: A randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am. J. Clin. Nutr. 2013;98:1179–1191.
3. Wade A.T., Davis C.R., Dyer K.A., Hodgson J.M., Woodman R.J., Keage H.A., Murphy K.J. A mediterranean diet to improve cardiovascular and cognitive health: Protocol for a randomised controlled intervention study. Nutrients. 2017;9:145
4. Van Ballegooijen A.J., Beulens J.W. The role of vitamin K status in cardiovascular health: Evidence from observational and clinical studies. Curr. Nutr. Rep. 2017;6:197–205.
5. Heaney R.P. Calcium, dairy products and osteoporosis. J. Am. Coll. Nutr. 2000;19:83S–99S.
6. Weaver C.M. How sound is the science behind the dietary recommendations for dairy? Am. J. Clin. Nutr. 2014;99:1217S–1222S.
7. Heaney RP. Dairy and bone health. J Am Coll Nutr 2009;28(Suppl 1):82S-90S.
8. Tognon G., Nilsson L.M., Shungin D., Lissner L., Jansson J.-H., Renström F., Wennberg M., Winkvist A., Johansson I. Nonfermented milk and other dairy products: Associations with all-cause mortality. Am. J. Clin. Nutr. 2017;105:1502–1511.
9. Michaëlsson K, Wolk A, Langenskiöld S, et al. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ. 2014;349:g6015.
10. Larsson SC, Virtamo J, Wolk A. Dairy consumption and risk of stroke in Swedish women and men. Stroke. 2012;43:1775–1780.
11. Patterson E, Larsson SC, Wolk A, Akesson A. Association between dairy food consumption and risk of myocardial infarction in women differs by type of dairy food. J Nutr. 2013;143:74–79.
12. Warensjö E, Smedman A, Stegmayr B, Hallmans G, Weinehall L, Vessby B, Johansson I. Stroke and plasma markers of milk fat intake--a prospective nested case-control study. Nutr J. 2009;8:21. doi: 10.1186/1475-2891-8-21.. [PMC free article]
13. Warensjö E, Jansson JH, Cederholm T, Boman K, Eliasson M, Hallmans G, Johansson I, Sjogren P. Biomarkers of milk fat and the risk of myocardial infarction in men and women: a prospective, matched case-control study. Am J Clin Nutr. 2010;92:194–202.
14. Sonestedt E, Wirfalt E, Wallstrom P, Gullberg B, Orho-Melander M, Hedblad B. Dairy products and its association with incidence of cardiovascular disease: the Malmo diet and cancer cohort. Eur J Epidemiol. 2011;26:609–618.
15. Michaëlsson K, Wolk A, Melhus H, Milk BL. Fruit and vegetable, and Total antioxidant intakes in relation to mortality rates: cohort studies in women and men. Am J Epidemiol. 2017;185:345–361.
16. Tognon Gianluca, Rothenberg Elisabet, Petrolo Martina, Sundh Valter, Lissner Lauren. Dairy product intake and mortality in a cohort of 70-year-old Swedes: a contribution to the Nordic diet discussion. European Journal of Nutrition. 2017;57(8):2869–2876
17. Food balance sheets [http://www.fao.org/faostat/en/#data/FBS]. Accessed 6 Feb 2018.
18. Johansson I, Nilsson LM, Esberg A, Jansson JH, Winkvist A. Dairy intake revisited - associations between dairy intake and lifestyle related cardio-metabolic risk factors in a high milk consuming population. Nutr J. 2018;17(1):110.
19. Wang C, Yatsuya H, Tamakoshi K, Iso H, Tamakoshi A. Milk drinking and mortality: findings from the Japan collaborative cohort study. J Epidemiol. 2015;25(1):66–73.
20. Paganini-Hill A, Kawas CH, Corrada MM. Non-alcoholic beverage and caffeine consumption and mortality: the Leisure World Cohort Study. Prev Med. 2007;44(4):305–10.
21. Soedamah-Muthu SS, Ding EL, Al-Delaimy WK, Hu FB, Engberink MF, Willett WC, et al. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr 2011;93:158-71.
22. Kanis JA, Johansson H, Oden A, De Laet C, Johnell O, Eisman JA, et al. A meta-analysis of milk intake and fracture risk: low utility for case finding. Osteoporos Int 2005;16:799-804.
23. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, Kanis JA, Orav EJ, Staehelin HB, et al. Milk intake and risk of hip fracture in men and women: a meta-analysis of prospective cohort studies. J Bone Miner Res 2011;26:833-9
24. Scourboutakos M, Franco-Arellano B, Murphy S, et al. Mismatch between probiotic benefits in trials versus food products. Nutrients. 2017;9:400.
25. Fernandez MA, Panahi S, Daniel N, Tremblay A, Marette A. Yogurt and Cardiometabolic Diseases: A Critical Review of Potential Mechanisms. Adv Nutr. 2017;8(6):812-829.
26. Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med. 2019;17(1):3. Published 2019 Jan 3. doi:10.1186/s12967-018-1760-8
27. Thorning TK, Bertram HC, Bonjour JP, et al. Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. Am J Clin Nutr. 2017;105:1033–1045
28. Pessione E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Inf Microbiol. 2012;2:86.
29. Sluijs I, Forouhi NG, Beulens JW, van der Schouw YT, Agnoli C, Arriola L, et al. The amount and type of dairy product intake and incident type 2 diabetes: results from the EPIC-InterAct Study. Am J Clin Nutr. 2012;96:382–390.
30. Guasch-Ferré M, Becerra-Tomás N, Ruiz-Canela M, Corella D, Schröder H, Estruch R, Ros E, Arós F, Gómez-Gracia E, Fiol M, et al. Total and subtypes of dietary fat intake and risk of type 2 diabetes mellitus in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J Clin Nutr 2017;105:723–35.
31. Song Y, Chavarro JE, Cao Y, Qiu W, Mucci L, Sesso HD, et al. Whole milk intake is associated with prostate cancer-specific mortality among U.S. male physicians. J Nutr. 2013;143:189–196.
32. Hruby A, Ma J, Rogers G, Meigs JB, Jacques PF. Associations of dairy intake with incident prediabetes or diabetes in middle-aged adults vary by both dairy type and glycemic status. J Nutr. 2017;147:1764–1775
33. Brouwer-Brolsma EM, van Woudenbergh GJ, Oude Elferink SJ, Singh-Povel CM, Hofman A, Dehghan A, Franco OH, Feskens EJ. Intake of different types of dairy and its prospective association with risk of type 2 diabetes: the Rotterdam Study. Nutr Metab Cardiovasc Dis 2016;26:987–95
34. Breuninger TA, Riedl A, Wawro N, et al. Differential associations between diet and prediabetes or diabetes in the KORA FF4 study. J Nutr Sci. 2018;7:e34. Published 2018 Dec 27.
35. Fernandez M, Marette A Novel perspectives on fermented milks and cardiometabolic health with a focus on type 2 diabetes. Nutr Rev. 2018 Dec 1;76
36. Gijsbers L, Ding EL, Malik VS, de Goede J, Geleijnse JM, Soedamah-Muthu SS. Consumption of dairy foods and diabetes incidence: a dose-response meta-analysis of observational studies. Am J Clin Nutr 2016;103:1111–24.
37. Eussen SJ, van Dongen MC, Wijckmans N, den Biggelaar L, Oude Elferink SJ, Singh-Povel CM, Schram MT, Sep SJ, van der Kallen CJ, Koster A, et al. Consumption of dairy foods in relation to impaired glucose metabolism and type 2 diabetes mellitus: the Maastricht Study. Br J Nutr 2016;115:1453–61.
38. Nagpal R, Behare P, Rana R, et al. Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct. 2011;2:18–27.
39. Chen M, Sun Q, Giovannucci E, et al. Dairy consumption and risk of type 2 diabetes: 3 cohorts of us adults and an updated meta-analysis. BMC Med. 2014;12:215.
40. Aune D, Norat T, Romundstad P, et al. Dairy products and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Am J Clin Nutr. 2013;98:1066–1083.
41. Gao D, Ning N, Wang C, et al. Dairy products consumption and risk of type 2 diabetes: systematic review and dose-response meta-analysis. PLoS One. 2013;8:e73965.
42. Tong X, Dong JY, Wu ZW, et al. Dairy consumption and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies. Eur J Clin Nutr. 2011;65:1027–1031.
43. Drouin-Chartier J.-P., Brassard D., Tessier-Grenier M., Côté J.A., Labonté M.-È., Desroches S., Couture P., Lamarche B. Systematic review of the association between dairy product consumption and risk of cardiovascular-related clinical outcomes. Adv. Nutr. 2016;7:1026–1040.
44. Chen H, Zhang SM, Hernán MA, Willett WC, Ascherio A. Diet and Parkinson’s disease: a potential role of dairy products in men. Ann Neurol. 2002;52:793–801.
45. LR, Masaki KH, Nelson JS, et al. Consumption of milk and calcium in midlife and the future risk of Parkinson disease. Neurology. 2005;64:1047–1051.
46. Kyrozis A, Ghika A, Stathopoulos P, Vassilopoulos D, Trichopoulos D, Trichopoulou A. Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. Eur J Epidemiol. 2013;28:67–77.
47. Jiang W, Ju C, Jiang H, Zhang D. Dairy foods intake and risk of Parkinson’s disease: a dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol. 2014;29:613–619]
48. Abbott RD, Ross GW, Petrovitch H, Masaki KH, Launer LJ, Nelson JS, et al. Midlife milk consumption and substantia nigra neuron density at death. Neurology. 2016;86:512–519.
49. Hughes KC, Gao X, Kim IY, Wang M, Weisskopf MG, Schwarzschild MA, et al. Intake of dairy foods and risk of Parkinson disease. Neurology. 2017;89:46–52.
50. Ross GW, Petrovitch H, Masaki KH, Launer LJ, Nelson JS, et al. Midlife milk consumption and substantia nigra neuron density at death. Neurology. 2016;86:512–519.
51. Sääksjärvi K, Knekt P, Lundqvist A, Männistö S, Heliövaara M, Rissanen H, et al. A cohort study on diet and the risk of Parkinson’s disease: the role of food groups and diet quality. Br J Nutr (2013) 109(2):329–3710.1017/S0007114512000955
52. Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46(2):294–305.
53. Rozenberg S, Body JJ, Bruyère O, et al. Effects of Dairy Products Consumption on Health: Benefits and Beliefs--A Commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Calcif Tissue Int. 2015;98(1):1-17.
54. Bielemann RM, Domingues MR, Horta BL et al. (2014) Physical activity from adolescence to young adulthood and bone mineral density in young adults from the 1982 Pelotas (Brazil) Birth Cohort. Prev Med 62, 201–207. [PubMed]
55. 38. Bielemann RM, Martinez-Mesa J & Gigante DP (2013) Physical activity during life course and bone mass: a systematic review of methods and findings from cohort studies with young adults. BMC Musculoskelet Disord 14, 77
56. Sluijs I., Forouhi N.G., Beulens J.W.J., van der Schouw Y.T., Agnoli C., Arriola L., Balkau B., Barricarte A., Boeing H., Bueno-de-Mesquita H.B. The amount and type of dairy product intake and incident type 2 diabetes: Results from the epic-interact study. Am. J. Clin. Nutr. 2012;96:382–390
57. Sahni S, Mangano KM, Kiel DP, Tucker KL, Hannan MT. Dairy Intake Is Protective against Bone Loss in Older Vitamin D Supplement Users: The Framingham Study. J Nutr. 2017;147(4):645-652.
58. Sahni S, Kiel DP, Hannan MT. The likely importance of specific dairy foods in relation to bone health: current knowledge and future challenges. In: Burckhardt P, Dawson-Hughes B, Weaver CM (eds),Nutritional Influences on Bone Health Springer2013; pp 307–313.
59. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, Kanis JA, Orav EJ, Staehelin HB, Kiel DP, Burckhardt Milk intake and risk of hip fracture in men and women: a meta-analysis of prospective cohort studies, J Bone Miner Res.2011;26(4):833–9.
60. Feskanich D, Willett WC, Colditz GA. Calcium, vitamin D, milk consumption, and hip fractures: a prospective study among postmenopausal women. Am J Clin Nutr. 2003;77(2):504–11.
61. Feskanich D, Willett WC, Stampfer MJ, Colditz GA,Milk, dietary calcium, and bone fractures in women: a 12-year prospective study. Am J Public Health. 1997;87(6):992–7.
62. Kalkwarf HJ, Khoury JC, Lanphear BP. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr. 2003;77(1):257–65.
63. Feskanich D, Bischoff-Ferrari HA, Frazier AL, Willett WC. Milk consumption during teenage years and risk of hip fractures in older adults. JAMA Pediatr. 2014;168:54–60. doi: 10.1001/jamapediatrics.2013.3821.
64. Feskanich D, Meyer HE, Fung TT, Bischoff-Ferrari HA, Willett WC. Osteoporos Int. 2018 Feb; 29(2):385-396. Epub 2017 Oct 27.
65. Bian S, Hu J, Zhang K, Wang Y, Yu M, Ma J. Dairy product consumption and risk of hip fracture: a systematic review and meta-analysis. BMC Public Health. 2018;18(1):165. Published 2018 Jan 22. doi:10.1186/s12889-018-5041-5
66. Michaelsson K, Wolk A, Langenskiold S, Basu S, Warensjo Lemming E, Melhus H, et al. Milk intake and risk of mortality and fractures in women and men: cohort studies. BMJ. 2014;349:g6015.
67. Sahni S, Mangano KM, Tucker KL, Kiel DP, Casey VA, Hannan MT. Protective association of milk intake on the risk of hip fracture: results from the Framingham original cohort. J Bone Miner Res. 2014;29:1756–1762. doi: 10.1002/jbmr.2219
68. Du X, Zhu K, Trube A, Zhang Q, Ma G, Hu X, Fraser DR, Greenfield H. School-milk intervention trial enhances growth and bone mineral accretion in Chinese girls aged 10–12 years in Beijing. Br J Nutr. 2004;92(1):159–168.
69. Le Louer B, Lemale J, Garcette K, Orzechowski C, Chalvon A, Girardet JP, Tounian P. Severe nutritional deficiencies in young infants with inappropriate plant milk consumption. Arch Pediatr 2014;21:483–8.
70. Tarnow-Mordi WO, Moss C, Ross K. Failure to thrive owing to inappropriate diet free of gluten and cow’s milk. Br Med J (Clin Res Ed) 1984;289:1113–4.
71. Liu T, Howard R, Mancini A, Weston W, Paller A, Drolet B, Esterly N, Levy M, Schachner L, Frieden I. Kwashiorkor in the United States, fad diets, perceived and true milk allergy, and nutritional ignorance. Arch Dermatol 2001;137:630–6.
72. Carvalho NF, Kenney RD, Carrington PH, Hall DE. Severe nutritional deficiencies in toddlers resulting from health food milk alternatives. Pediatrics 2001;107:E46.
73. International Markets Bureau. American eating trends report: milk and milk alternatives. Ottawa (Canada): Agriculture and Agri-Food Canada; 2012.
74. Henriksen C, Eggesbø M, Halvorsen R, Botten G. Nutrient intake among two year old children on cows’ milk restricted diets. Acta Paediatr 2000;89:272–8.
75. Black RE, Williams SM, Jones IE, Goulding A. Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. Am J Clin Nutr 2002;76:675–80.
76. DeBoer MD, Agard HE, Scharf RJ. Milk intake, height and body mass index in preschool children. Arch Dis Child 2015;100:460–5.
77. Marie-Elssa Morency, Catherine S Birken, Gerald Lebovic, Yang Chen, Mary L’Abbé, Grace J Lee, Jonathon L Maguire, the TARGet Kids! Collaboration; Association between noncow milk beverage consumption and childhood height, The American Journal of Clinical Nutrition, Volume 106, Issue 2, 1 August 2017, Pages 597–602,
78. Melnik BC, John SM, Schmitz G. Milk consumption during pregnancy increases birth weight, a risk factor for the development of diseases of civilization. J Transl Med. 2015;13:13. Published 2015 Jan 16. doi:10.1186/s12967-014-0377-9
79. Olsen SF, Halldorsson T, Willett WC, Knudsen VK, Gillman MW, Mikkelsen TB, et al. Milk consumption during pregnancy is associated with increased infant size at birth: prospective cohort study. Am J Clin Nutr. 2007;86:1104–1110.
80. Ganpule A, Yajnik CS, Fall CH, Rao S, Fisher DJ, Kanade A, Cooper C, Naik S, Joshi N, Lubree H, Deshpande V, Joglekar C. Bone mass in Indian children–relationships to maternal nutritional status and diet during pregnancy: the Pune Maternal Nutrition Study. J Clin Endocrinol Metab. 2006;91(8):2994–3001.
81. Cole ZA, Gale CR, Javaid MK, Robinson SM, Law C, Boucher BJ, Crozier SR, Godfrey KM, Dennison EM, Cooper C. Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study. J Bone Miner Res. 2009;24(4):663–668.
82. Bielemann RM, Dos S Vaz J, Domingues MR, et al. Are consumption of dairy products and physical activity independently related to bone mineral density of 6-year-old children? Longitudinal and cross-sectional analyses in a birth cohort from Brazil. Public Health Nutr. 2018;21(14):2654-2664.
83. Chan GM, McEligott K, Mc Naught T, Gill G. Effect of dietary calcium intervention on adolescent mothers and newborns: a randomized controlled trial. Obstet Gynecol 2006; 1808: 565–571.
84. Berkey CS, Colditz GA, Rockett HRH, Frazier AL, Willett WC. Dairy consumption and female height growth: prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1881–7.
85. Wiley AS. Does milk make children grow? Relationships between milk consumption and height in NHANES 1999–2002. Am J Human Biol. 2005;17(4):425–41
86. de Beer H. Dairy products and physical stature: a systematic review and meta-analysis of controlled trials. Econ Hum Biol 2012;10:299–309.
87. Wiley AS. Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach. Am J Hum Biol 2012;24:130–8.
88. Rogers I, Emmet P, Gunnel D, Dunger D, Holly J. Milk as a food for growth? The insulin-like growth factors link. Public Health Nutr 2006;9:359–68.
89. Hoppe C, Udam TR, Lauritzen L, Mølgaard C, Juul A, Michaelsen KF. Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-y-old Danish children. Am J Clin Nutr 2004;80:447–52.
90. Hoidrup S, Gronbaek M, Gottschau A, Lauritzen JB, Schroll M. Alcohol intake, beverage preference, and risk of hip fracture in men and women. Copenhagen Centre for Prospective Population Studies. Am J Epidemiol. 1999;149(11):993–1001. doi: 10.1093/oxfordjournals.aje.a009760
91. Abrams SA, Chen Z, Hawthorne KM. Magnesium metabolism in 4-year-old to 8-year-old children. J Bone Miner Res. 2014;29(1):118–22.
92. Huncharek M, Muscat J, Kupelnick B. Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone. 2008;43(2):312–21.
93. Daly RM, Petrass N, Bass S, Nowson CA. The skeletal bene fi ts of calcium- and vitamin D3-forti fi ed milk are sustained in older men after withdrawal of supplementation: an 18-mo follow-up study. Am J Clin Nutr. 2008;87(3):771–7. 87/3/771
94. Heaney RP, McCarron DA, Dawson-Hughes B, Oparil S, Berga SL, Stern JS, Barr SI, Rosen CJ. Dietary changes favorably affect bone remodelin in older adults. J Am Diet Assoc. 1999;99(10): 1228–33.
95. Bonjour JP, Brandolini-Bunlon M, Boirie Y, MorelLaporte F, Braesco V, Bertiere MC, Souberbielle JC. Inhibition of bone turnover by milk intake in postmenopausal women. Br J Nutr. 2008;100(4):866–74.
96. Cleghorn DB, O’Loughlin PD, Schroeder BJ, Nordin BE. An open, crossover trial of calcium-fortifi ed milk in prevention of early postmenopausal bone loss. Med J Aust. 2001;175(5):242–5.
97. Michaëlsson K, Wolk A, Lemming EW, Melhus H, Byberg L. Intake of milk or fermented milk combined with fruit and vegetable consumption in relation to hip fracture rates: a cohort study of swedish women. J Bone Miner Res. 2018;33:449–457.]
98. Tu MY, Chen HL, Tung YT, Kao CC, Hu FC, Chen CM. Short-term effects of kefir-fermented milk consumption on bone mineral density and bone metabolism in a randomized clinical trial of osteoporotic patients. PLoS ONE. 2015;10:e0144231
99. Biver E, Durosier-Izart C, Merminod F, Chevalley T, van Rietbergen B, Ferrari SL, et al. Fermented dairy products consumption is associated with attenuated cortical bone loss independently of total calcium, protein, and energy intakes in healthy postmenopausal women. Osteoporos Int. 2018;29:1771–1782.
100. Bian S, Hu J, Zhang K, Wang Y, Yu M, Ma J. Dairy product consumption and risk of hip fracture: a systematic review and meta-analysis. BMC Public Health. 2018;18:165.
101. Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46(2):294–305.
102. Ferrari S, Rizzoli R, Bonjour JP. Genetic aspects of osteoporosis. Curr Opin Rheumatol. 1999;11(4):294–300.
103. Rizzoli R. Dairy products, yogurts, and bone health. Am J Clin Nutr. 2014;99(5 Suppl):1256S–1262S. doi: 10.3945/ajcn.113.073056
104. Goulding A, Rockell JE, Black RE, Grant AM, Jones IE, Williams SM. Children who avoid drinking cow’s milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc. 2004;104(2):250–253.
105. Konstantynowicz J, Nguyen TV, Kaczmarski M, Jamiolkowski J, Piotrowska-Jastrzebska J, Seeman E. Fractures during growth: potential role of a milk-free diet. Osteoporos Int. 2007;18(12):1601–1607.
106. Chevalley T, Bonjour JP, Ferrari S, Hans D, Rizzoli R. Skeletal site selectivity in the effects of calcium supplementation on areal bone mineral density gain: a randomized, double-blind, placebo-controlled trial in prepubertal boys. J Clin Endocrinol Metab. 2005;90(6):3342–3349.
107. Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, Rizzoli R. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest. 1997;99(6):1287–1294.
108. Bonjour JP, Chevalley T, Ammann P, Slosman D, Rizzoli R. Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study. Lancet. 2001;358(9289):1208–1212.
109. Cheng S, Lyytikainen A, Kroger H, Lamberg-Allardt C, Alen M, Koistinen A, Wang QJ, Suuriniemi M, Suominen H, Mahonen A, Nicholson PH, Ivaska KK, Korpela R, Ohlsson C, Vaananen KH, Tylavsky F. Effects of calcium, dairy product, and vitamin D supplementation on bone mass accrual and body composition in 10-12-y-old girls: a 2-y randomized trial. Am J Clin Nutr. 2005;82(5):1115–1126.
110. Huncharek M, Muscat J, Kupelnick B. Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone. 2008;43(2):312–21.
111. Daly RM, Petrass N, Bass S, Nowson CA. The skeletal bene fi ts of calcium- and vitamin D3-forti fi ed milk are sustained in older men after withdrawal of supplementation: an 18-mo follow-up study. Am J Clin Nutr. 2008;87(3):771–7. 87/3/771
112. Heaney RP, McCarron DA, Dawson-Hughes B, Oparil S, Berga SL, Stern JS, Barr SI, Rosen CJ. Dietary changes favorably affect bone remodelin in older adults. J Am Diet Assoc. 1999;99(10): 1228–33.
113. Bonjour JP, Brandolini-Bunlon M, Boirie Y, MorelLaporte F, Braesco V, Bertiere MC, Souberbielle JC. Inhibition of bone turnover by milk intake in postmenopausal women. Br J Nutr. 2008;100(4):866–74.
114. Cleghorn DB, O’Loughlin PD, Schroeder BJ, Nordin BE. An open, crossover trial of calcium-fortifi ed milk in prevention of early postmenopausal bone loss. Med J Aust. 2001;175(5):242–5.
115. James C Fleet; Dairy consumption and the prevention of colon cancer: is there more to the story than calcium?, The American Journal of Clinical Nutrition, Volume 83, Issue 3, 1 March 2006, Pages 527–528,
116. Cho E et al. Dairy foods, calcium and colorectal cancer: a pooled analysis of 10 cohort studies. J Natl Cancer Inst 2004;96:1015-1022.
117. Bácsi K, Hitre E, Kosa JP, Horvath H, Lazary A, Lakatos PL, et al. Effects of the lactase 13910 C/T and calcium-sensor receptor A986S G/T gene polymorphisms on the incidence and recurrence of colorectal cancer in Hungarian population. BMC Cancer. 2008;8:317
118. Ralston RA, Truby H, Palermo CE, Walker KZ. Colorectal cancer and nonfermented milk, solid cheese, and fermented milk consumption: a systematic review and meta-analysis of prospective studies. Crit Rev Food Sci Nutr. 2014;54(9):1167–79.
119. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of colorectal cancer. London, UK: WCRF International; 2011.
120. Lampe JW. Dairy products and cancer. J Am Coll Nutr. 2011;30(5 Suppl 1):464S–70S.
121. Aune D, Lau R, Chan DS, Vieira R, Greenwood DC, Kampman E, et al. Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol. 2012;23(1):37–45.
122. Huncharek M, Muscat J, Kupelnick B. Colorectal cancer risk and dietary intake of calcium, vitamin D, and dairy products: a meta-analysis of 26,335 cases from 60 observational studies. Nutr Cancer. 2009;61(1):47–69.
123. Keum N, Aune D, Greenwood DC, Ju W, Giovannucci EL. Calcium intake and colorectal cancer risk: dose-response meta-analysis of prospective observational studies. Int J Cancer. 2014;135(8):1940–8.
124. Newmark HL, Wargovich MJ, Bruce WR. Colon cancer and dietary fat, phosphate, and calcium: a hypothesis. J Natl Cancer Inst. 1984;72(6):1323–5. [PubMed]
125. Lamprecht SA, Lipkin M. Cellular mechanisms of calcium and vitamin D in the inhibition of colorectal carcinogenesis. Ann N Y Acad Sci. 2001;952:73–87. [PubMed]
126. Holt PR, Wolper C, Moss SF, Yang K, Lipkin M. Comparison of calcium supplementation or low-fat dairy foods on epithelial cell proliferation and differentiation. Nutr Cancer. 2001;41(1–2):150–5.
127. Karagas MR, Tosteson TD, Greenberg ER, Rothstein RI, Roebuck BD, Herrin M, et al. Effects of milk and milk products on rectal mucosal cell proliferation in humans. Cancer Epidemiol Biomarkers Prev. 1998;7(9):757–66.
128. Guo Y, Shan Z, Ren H, Chen W. Dairy consumption and gastric cancer risk: a meta-analysis of epidemiological studies. Nutr Cancer. 2015;67(4):555–68.
129. Travis RC, Appleby PN, Siddiq A, Allen NE, Kaaks R, Canzian F, et al. Genetic variation in the lactase gene, dairy product intake and risk for prostate cancer in the European prospective investigation into cancer and nutrition. Int J Cancer. 2013;132(8):1901–10
130. Torfadottir JE, Steingrimsdottir L, Mucci L, et al. Milk intake in early life and risk of advanced prostate cancer. Am J Epidemiol. 2011;175(2):144-53.
131. Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycemic food and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol. 2009;10:833–841.
132. Francis GL, Upton FM, Ballard FJ, McNeil KA, Wallace JC. Insulin-like growth factors 1 and 2 in bovine colostrum. Sequences and biological activities compared with those of a potent truncated form. Biochem J. 1988;251:95–103
133. Melnik BC. Milk – The promoter of chronic Western diseases. . Med Hypotheses. 2009;
134. Thankamony A, Ong KK, Ahmed ML, Ness AR, Holly JMP, Dunger DB. Higher levels of IGF-I and adrenal androgens at age 8 years are associated with earlier age at menarche in girls. Journal of Clinical Endocrinology and Metabolism. 2012;97(5):E786–E790.
135. Aune D, Rosenblatt DAN, Chan DSM, et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr. 2015;101:87-117.
136. Song Y, Chavarro JE, Cao Y, et al. Whole milk intake is associated with prostate cancer-specific mortality among U.S. male physicians. J Nutr. 2013;143:189-196.
137. Tat D, Kenfield SA, Cowan JE, et al. Milk and other dairy foods in relation to prostate cancer recurrence: Data from the cancer of the prostate strategic urologic research endeavor (CaPSURE™). Prostate. 2017;78(1):32-39.
138. Latino-Martel P, Cottet V, Druesne-Pecollo N, Pierre FH, Touillaud M, Touvier M, et al. Alcoholic beverages, obesity, physical activity and other nutritional factors, and cancer risk: a review of the evidence. Crit Rev Oncol Hematol. 2016;99:308–23.
139. World Cancer Research Fund International/American Institute for Cancer Research. Diet, nutrition, physical activity, and prostate cancer. London, UK: WCRF International; 2014.
140. Aune D, Navarro Rosenblatt DA, Chan DS, Vieira AR, Vieira R, Greenwood DC, et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am J Clin Nutr. 2015;101(1):87–117.
141. Roddam AW, Allen NE, Appleby P, Key TJ, Ferrucci L, Carter HB, et al. Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis of individual patient data from 12 prospective studies. Ann Intern Med. 2008;149(7):461–71. W83–8.
142. Kang SH, Kim JU, Imm JY, Oh S, Kim SH: The effects of dairy processes and storage on insulin-like growth factor-I (IGF-I) content in milk and in model IGF-I-fortified dairy products. J Dairy Sci 89, 402–9, 2006.
143. Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. (2013) 12:103. 10.1186/1475-2891-12-103
144. Chen W, Yang CC, Sheu HM, Seltmann H, Zouboulis CC. Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes. J Invest Dermatol. 2003;121:441–447. doi: 10.1046/j.1523-1747.2003.12411.x.
145. Makrantonaki E, Zouboulis CC. Testosterone metabolism to 5alpha-dihydrotestosterone and synthesis of sebaceous lipids is regulated by the peroxisome proliferator-activated receptor ligand linoleic acid in human sebocytes. Br J Dermatol. 2007;156:428–432.
146. Downie MM, Kealey T. Human sebaceous glands engage in aerobic glycolysis and glutaminolysis. Br J Dermatol. 2004;151:320–327.
147. Aghasi M, Golzarand M, Shab-Bidar S, Aminianfar A Dairy intake and acne development: A meta-analysis of observational studies. Clin Nutr. 2018 May 8. pii: S0261-5614(18)30166-3.
148. J Eur Acad Dermatol Venereol. 2018 Dec;32(12):2244-2253. doi: 10.1111/jdv.15204. Epub 2018 Sep 5. The effect of milk consumption on acne: a meta-analysis of observational studies. Dai R Hua W, Chen W, Xiong L
149. Juhl CR, Bergholdt HKM, Miller IM, Jemec GBE, Kanters JK, Ellervik C. Dairy Intake and Acne Vulgaris: A Systematic Review and Meta-Analysis of 78,529 Children, Adolescents, and Young Adults. Nutrients. 2018;10(8):1049. Published 2018 Aug 9. doi:10.3390/nu10081049
150. Smith R.N., Mann N.J., Braue A., Makelainen H., Varigos G.A. A low-glycemic-load diet improves symptoms in acne vulgaris patients: A randomized controlled trial. Am. J. Clin. Nutr. 2007;86:107–115.
151. Chung M, Raman G, Chew P, Magula N, DeVine D, et al. Breastfeeding and maternal and infant health outcomes in developed countries. Evid Rep Technol Assess (Full Rep) 2007;153:1–186.
152. Oddy W, Breastfeeding, Childhood Asthma, and Allergic Disease. Ann Nutr Metab. 2017;70 Suppl 2:26-36. doi: 10.1159/000457920. Epub 2017 May 19.
153. Bener A, Ehlayel MS, Alsowaidi S, Sabbah A. Role of breast feeding in primary prevention of asthma and allergic diseases in a traditional society. Eur Ann Allergy Clin Immunol. 2007;39:337–343.
154. Oddy WH. Breastfeeding, childhood asthma, and allergic disease. Ann Nutr Metab. 2017;70(Suppl 2):26–36. doi: 10.1159/000457920. [PubMed] [CrossRef]
155. Azad MB, Vehling L, Lu Z, Dai D, Subbarao P, Becker AB, et al. Breastfeeding, maternal asthma and wheezing in the first year of life: a longitudinal birth cohort study. Eur Respir J. 2017;49:1602019. doi: 10.1183/13993003.02019-2016. [PubMed] [CrossRef]
156. Klopp A, Vehling L, Becker AB, Subbarao P, Mandhane PJ, Turvey SE, et al. Modes of infant feeding and the risk of childhood asthma: a prospective birth cohort study. J Pediatr. 2017;190:192–199
157. Sozanska B, Pearce N, Dudek K, Cullinan P. Consumption of unpasteurized milk and its effects on atopy and asthma in children and adult inhabitants in rural Poland. Allergy. 2013;68:644–650.
158.
159. von Mutius E, Vercelli D. Farm living: effects on childhood asthma and allergy. Nat Rev Immunol. 2010;10:861–868.
160. Perkin MR, Strachan DP. Which aspects of the farming lifestyle explain the inverse association with childhood allergy? J Allergy Clin Immunol. 2006;117:1374–1381.
161. Loss G, Apprich S, Waser M, Kneifel W, Genuneit J, Büchele G, Weber J, Sozanska B, Danielewicz H, Horak E, van Neerven RJ, Heederik D, Lorenzen PC, von Mutius E, Braun-Fahrländer C. GABRIELA study group. The protective effect of farm milk consumption on childhood asthma and atopy: the GABRIELA study. J Allergy Clin Immmunol. 2011;128:766–773.
162. Braun-Fahrländer C, von Mutius E. Can farm milk consumption prevent allergic diseases? Clin Exp Allergy. 2011;41:29–35.
163. Illi S, Depner M, Genuneit J, Horak E, Loss G, Strunz-Lehner C, Büchele G, Boznanski A, Danielewicz H, Cullinan P, Heederik D, Braun-Fahrländer C, von Mutius E. GABRIELA Study Group. Protection from childhood asthma and allergy in Alpine farm environments – the GABRIEL Advanced Studies. J Allergy Clin Immunol. 2012;129:1470–1477.
164. Loss G, Bitter S, Wohlgensinger J, Frei R, Roduit C, Genuneit J, Pekkanen J, Roponen M, Hirvonen MR, Dalphin JC, Dalphin ML, Riedler J, von Mutius E, Weber J, Kabesch M, Michel S, Braun-Fahrländer C, Lauener R. PASTURE study group. Prenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study. J Allergy Clin Immunol. 2012;130:523–530.
165. von Mutius E. Maternal farm exposure/ingestion of unpasteurized cow’s milk and allergic disease. Current Opin Gastroenterol. 2012;28:570–576.
166. Wlasiuk G, Vercelli D. The farm effect, or: when, what and how a farming environment protects from asthma and allergic disease. Curr Opin Allergy Clin Immunol. 2012;12:461–466.
167. Lluis A, Schaub B. Lessons from the farm environment. Curr Opin Allergy Clin Immunol. 2012;12:158–163.
168. Radon K, Windstetter D, Eckart J, Dressel H, Leitritz L, Reichert J, Schmid M, Praml G, Schosser M, von Mutius E, Nowak D. Farming exposure in childhood, exposure to markers of infections and the development of atopy in rural subjects. Clin Exp Allergy 2004; 34:1178–83
169. Remes ST, Iivanainen K, Koskela H, Pekkanen J. Which factors explain the lower prevalence of atopy amongst farmers’ children? Clin Exp Allergy 2003; 33:427–34.
170. Lluis A Depner M Gaugler B Saas P Casaca VI Raedler D Michel S Tost J Liu J Genuneit J Pfefferle P Roponen M Weber J Braun-Fahrländer C Riedler J Lauener R Vuitton DA Dalphin JC Pekkanen J von Mutius E Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. J Allergy Clin Immunol. 2014; 133: 551–559
171. Loss G, Depner M, Ulfman LH, Joost van Neerven RJ, Hose AJ, Genuneit J, et al. Consumption of unprocessed cow’s milk protects infants from common respiratory infections. J Allergy Clin Immunol (2015) 135:56–62.10.1016/j.jaci.2014.08.044
172. Timby N, Hernell O, Vaarala O, Melin M, Lönnerdal B, Domellöf M. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J Pediatr Gastroenterol Nutr (2015) 60:384–9.10.1097/MPG.0000000000000624 [PubMed] [CrossRef]
173. Chen K, Chai L, Li H, Zhang Y, Xie HM, Shang J, et al. Effect of bovine lactoferrin from iron-fortified formulas on diarrhea and respiratory tract infections of weaned infants in a randomized controlled trial. Nutrition (2016) 32:222–7.10.1016/j.nut.2015.08.010
174. 4King JC, Jr, Cummings GE, Guo N, Trivedi L, Readmond BX, Keane V, et al. A double-blind, placebo-controlled, pilot study of bovine lactoferrin supplementation in bottle-fed infants. J Pediatr Gastroenterol Nutr (2007) 44:245–51.10.1097/01.mpg.0000243435.54958.68
175. Saad K, Abo-elela MGM, El-baseer KAA, Diab M, Khair A, Abdel-salam AM, et al. Effects of bovine colostrum on recurrent respiratory tract infections and diarrhea in children. Medicine (2016) 95:e4560.10.1097/MD.0000000000004560
176. Oddy WH, Rosales F. A systematic review of the importance of milk TGF-beta on immunological outcomes in the infant and young child. Pediatr Allergy Immunol (2010)
177. Oddy WH, McMahon RJ. Milk-derived or recombinant transforming growth factor-beta has effects on immunological outcomes: a review of evidence from animal experimental studies. Clin Exp Allergy (2011) 41:783–93.10.1111/j.1365-2222.2011.03762.x
178. Chatterton DEW, Nguyen DN, Bering SB, Sangild PT. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int J Biochem Cell Biol (2013) 45:1730–47.10.1016/j.biocel.2013.04.028
179. Kalliomäki M, Ouwehand A, Arvilommi H, Kero P, Isolauri E. Transforming growth factor-beta in breast milk: a potential regulator of atopic disease at an early age. J Allergy Clin Immunol (1999) 104:1251–7.10.1016/S0091-6749(99)70021-7
180. Peroni DG, Piacentini GL, Bodini A, Pigozzi R, Boner AL. Transforming growth factor-β1 is elevated in unpasteurized cow’s milk. Pediatr Allergy Immunol (2009) 20:42–4.10.1111/j.1399-3038.2008.00737.x
181. Pieters BC, Arntz OJ, Bennink MB, et al. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β. PLoS One. 2015;10(3):e0121123. Published 2015 Mar 30. doi:10.1371/journal.pone.0121123
182. Perdijk O, van Splunter M, Savelkoul HFJ, Brugman S, van Neerven RJJ. Cow's Milk and Immune Function in the Respiratory Tract: Potential Mechanisms. Front Immunol. 2018;9:143. Published 2018 Feb 12. doi:10.3389/fimmu.2018.00143
183. Pieters BC, Arntz OJ, Bennink MB, Broeren MG, van Caam AP, Koenders MI, et al. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β PLoS ONE. 2015;10:e0121123.
184. Oh S, Park MR, Son SJ, Kim Y. Comparison of total RNA isolation methods for analysis of immune-related microRNAs in market milks. Korean J Food Sci Anim Resour. 2015;35:459–465.
185. Yufei CuiCong HuangHaruki MommaZhongyu RenShota SugiyamaLei GuanKaijun NiuRyoichi Nagatomi, Consumption of low-fat dairy, but not whole-fat dairy, is inversely associated with depressive symptoms in Japanese adults Social Psychiatry and Psychiatric Epidemiology July 2017, Volume 52, Issue 7, pp 847–853
186. Schwarcz, R., Bruno, J. P., Muchowski, P. J. & Wu, H. Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13, 465–477, doi: 10.1038/nrn3257 (2012).
187. DiNatale, B. C. et al. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol. Sci. 115, 89–97 (2010).
188. Kang W, Bang-Berthelsen CH, Holm A, et al. Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts. RNA. 2017;23(4):433-445.
189. Witwer KW. Alternative miRNAs? Human sequences misidentified as plant miRNAs in plant studies and in human plasma. F1000Res. 2018;7:244. Published 2018 Feb 28. doi:10.12688/f1000research.14060.1
190. Auerbach A, Vyas G, Li A, Halushka M, Witwer K. Uptake of dietary milk miRNAs by adult humans: a validation study. F1000Res. 2016;5:721. Published 2016 Apr 22. doi:10.12688/f1000research.8548.1
191. Jiang M, Sang X, Hong Z. Beyond nutrients: food-derived microRNAs provide cross-kingdom regulation. Bioessays. 2012;34:280–4.
192. Hirschi KD. New foods for thought. Trends Plant Sci. 2012;17:123–5.
193. Kosaka N, Ochiya T. Unraveling the Mystery of Cancer by Secretory microRNA: Horizontal microRNA Transfer between Living Cells. Front Genet. 2011;2:97.
194. Zempleni J. Milk exosomes: beyond dietary microRNAs. Genes Nutr. 2017;12:12. Published 2017 Jun 22. doi:10.1186/s12263-017-0562-6
195. Zempleni J, Aguilar-Lozano A, Sadri M, et al. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J Nutr. 2016;147(1):3-10.
196. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33. doi: 10.1016/j.cell.2009.01.002
197. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.
198. Diversifying microRNA sequence and functionAmeres, Stefan L.; Zamore, Phillip D. Nature Reviews Molecular Cell Biology (2013), 14 (8),
199. Rodrigues AC, Li X, Radecki L, Pan YZ, Winter JC, Huang M, et al. MicroRNA expression is differentially altered by xenobiotic drugs in different human cell lines. Biopharm Drug Dispos. 2011;32:355–67. doi: 10.1002/bdd.764.
200. Wang X, Ye L, Zhou Y, Liu MQ, Zhou DJ, Ho WZ. Inhibition of anti-HIV microRNA expression: a mechanism for opioid-mediated enhancement of HIV infection of monocytes. Am J Pathol. 2011;178:41–7.
201. Wang LL, Zhang Z, Li Q, Yang R, Pei X, Xu Y, et al. Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod. 2009;24:562–79.
202. Guo Y, Chen Y, Carreon S, Qiang M. Chronic Intermittent Ethanol Exposure and Its Removal Induce a Different miRNA Expression Pattern in Primary Cortical Neuronal Cultures. Alcohol Clin Exp Res. 2011;36:1058–66.
203. Ross SA, Davis CD. MicroRNA, nutrition, and cancer prevention. Adv Nutr. 2011;2:472–85.
204. Ryu MS, Langkamp-Henken B, Chang SM, Shankar MN, Cousins RJ. Genomic analysis, cytokine expression, and microRNA profiling reveal biomarkers of human dietary zinc depletion and homeostasis. Proc Natl Acad Sci U S A. 2011;108:20970–5.
205. Soci UP, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics. 2011;43:665–73. doi: 10.1152/physiolgenomics.00145.2010.
206. Liu G, Detloff MR, Miller KN, Santi L, Houlé JD. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol. 2012;233:447–56. doi: 10.1016/j.expneurol.2011.11.018. [PMC free article] [PubMed] [CrossRef]
207. Nielsen S, Scheele C, Yfanti C, Akerström T, Nielsen AR, Pedersen BK, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010;588:4029–37. doi: 10.1113/jphysiol.2010.189860.
208. Radom-Aizik S, Zaldivar F, Jr., Leu SY, Adams GR, Oliver S, Cooper DM. Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin Transl Sci. 2012;5:32–8. doi: 10.1111/j.1752-8062.2011.00384.x.
209. Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol. 2011;589:3983–94.
210. Lodish HF, Zhou B, Liu G, Chen CZ. Micromanagement of the immune system by microRNAs. Nat Rev Immunol. 2008;8:120–130. doi: 10.1038/nri2252.
211. Fabbri M, Croce CM, Calin GA. MicroRNAs. Cancer J. 2008;14(1):1–6.
212. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233. [PMC free article] [PubMed]
213. Meza-Sosa KF, Pedraza-Alva G, Perez-Martinez L. microRNAs: key triggers of neuronal cell fate. Front Cell Neurosci. 2014;8:175.
214. Mysore R, Zhou Y, Sadevirta S, et al. MicroRNA-192* impairs adipocyte triglyceride storage. Biochim Biophys Acta. 2016;1861(4):342–351.
215. Bissels U, Bosio A, Wagner W. MicroRNAs are shaping the hematopoietic landscape. Haematologica. 2012;97(2):160–167.
216. O’Connell RM, Rao DS, Chaudhuri AA, et al. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10(2):111–122.
217. Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–1741.
218. Zhou Q, Li M, Wang X, et al. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012;8(1):118–123.
219. Laffont B, Corduan A, Ple H, et al. Activated platelets can deliver mRNA regulatory Ago microRNA complexes to endothelial cells via microparticles. Blood. 2013;122(2):253–261.
220. Witwer KW. XenomiRs and miRNA homeostasis in health and disease: evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol. 2012;9(9):1147–1154.
221. Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. doi: 10.3402/jev.v4.27066.
222. Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on extracellular vesicles: physiological role and signalling properties of extracellular membrane vesicles. Int J Mol Sci. 2016;17:171. doi: 10.3390/ijms17020171.
223. Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36:301–312. doi: 10.1007/s10571-016-0366-z.
224. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. (2007) 9:654–9. 10.1038/ncb1596
225. Alsaweed M, Hartmann PE, Geddes DT, Kakulas F. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health. 2015;12:13981–14020.
226. Cui J, Zhou B, Ross SA, Zempleni J. Nutrition, microRNAs, and human health. Adv Nutr. 2017;8:105–112.
227. Melnik BC, Schmitz G. Milk’s role as an epigenetic regulator in health and disease. Diseases. 2017;5(1):E12.
228. Melnik BC, Schmitz G. MicroRNAs: milk’s epigenetic regulators. Best Pract Res Clin Endocrinol Metab. 2017;31:427–442.
229. Lässer C, Alikhani VS, Ekström K, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011;9:9. Published 2011 Jan 14. doi:10.1186/1479-5876-9-9
230. Kahn S, Liao Y, Du X, Xu W, Li J, Lönnerdal B. Exosomal microRNAs in milk from mothers delivering preterm infants survive in vitro digestion and are taken up by human intestinal cells. Mol Nutr Food Res. 2018;62:e1701050.
231. Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun. 2010;396:528–533. doi: 10.1016/j.bbrc.2010.04.13
232. Wolf T, Baier SR, Zempleni J. The intestinal transport of Bovine milk exosomes is mediated by endocytosis in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells. J Nutr. 2015;145(10):2201–2206.
233. Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1:7.
234. Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, et al. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci. 2012;8:118–23.
235. Ouyang Y, Mouillet JF, Coyne CB, Sadovsky Y. Review: placenta-specific microRNAs in exosomes – good things come in nano-packages. Placenta. 2014;35(Suppl):S69–73
236. Admyre C, Johansson SM, Qazi KR, Filén JJ, Lahesmaa R, Norman M, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179:1969–1978. doi: 10.4049/jimmunol.179.3.1969
237. Melnik BC, John SM, Schmitz G. Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J Transl Med. 2014;12:43. doi: 10.1186/1479-5876-12-43
238. Benmoussa A, Ly S, Shan ST, et al. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow's milk. J Extracell Vesicles. 2017;6(1):1401897. Published 2017 Nov 21.
239. Davis CD, Ross SA. Evidence for dietary regulation of microRNA expression in cancer cells. Nutr Rev. 2008;66:477–82.
240. Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22:107–26.
241. Benmoussa A, Lee CH, Laffont B, et al. Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr. 2016;146(11):2206–2215.
242. Izumi H, Kosaka N, Shimizu T, et al. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci. 2012;95(9):4831–4841.
243. Kusuma RJ, Manca S, Friemel T, Sukreet S, Nguyen C, Zempleni J. Human vascular endothelial cells transport foreign exosomes from cow’s milk by endocytosis. Am J Physiol Cell Physiol. 2016;310:C800–C807.
244. Kusuma RJ, Manca S, Friemel T, Sukreet S, Nguyen C, Zempleni J. Human vascular endothelial cells transport foreign exosomes from cow’s milk by endocytosis. Am J Physiol Cell Physiol. 2016;310:C800–C807.
245. Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016;371:48–61. doi: 10.1016/j.canlet.2015.10.020
246. Wang L, Sadri M, Giraud D, Zempleni J. RNase H2-dependent polymerase chain reaction and elimination of confounders in sample collection, storage, and analysis strengthen evidence that microRNAs in bovine milk are bioavailable in humans. J Nutr. 2018;148:153–159.
247. Izumi H, Tsuda M, Sato Y, et al. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J Dairy Sci. 2015;98(5):2920–2933.
248. Sayón-Orea C., Bes-Rastrollo M., Martí A., Pimenta A.M., Martín-Calvo N., Martínez-González M.A. Association between yogurt consumption and the risk of metabolic syndrome over 6 years in the sun study. BMC Public Health. 2015;15:170
249. Turner K.M., Keogh J.B., Clifton P.M. Dairy consumption and insulin sensitivity: A systematic review of short- and long-term intervention studies. Nutr. Metab. Cardiovasc. Dis. 2015;25:3–8.
250. Milk miRNAs: simple nutrients or systemic functional regulators? Nutr Metab (Lond). 2016; 13: 42. Bodo C. Melnik, Foteini Kakulas, Donna T. Geddes, Peter E. Hartmann, Swen Malte John, Pedro Carrera-Bastos, Loren Cordain, and Gerd Schmitz
251. Pieters BC, Arntz OJ, Bennink MB, et al. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-beta. PLoS One. 2015;10(3):e0121123.
252. Involvement of microRNA in AU-rich element-mediated mRNA instability Jing, Qing; Huang, Shuang; Guth, Sabine; Zarubin, Tyler; Motoyama, Andrea; Chen, Jianming; Di Padova, Franco; Lin, Sheng-Cai; Gram, Hermann; Han, Jiahuai Cell (Cambridge, MA, United States) (2005), 120 (5), 623-634CODEN: CELLB5; ISSN:0092-8674.
253. Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. (2013) 12:103. 10.1186/1475-2891-12-103
254. van Herwijnen MJ, Zonneveld MI, Goerdayal S, Nolte-'t Hoen EN, Garssen J, Stahl B, et al. Comprehensive proteomic analysis of human milk-derived extracellular vesicles unveils a novel functional proteome distinct from other milk components. Mol Cell Proteomics (2016) 15:3412–23. 10.1074/mcp.M116.060426
255. Katherine M. Howard, Rio Jati Kusuma, Scott R. Baier, Taylor Friemel .Loss of miRNAs during Processing and Storage of Cow’s (Bos taurus) Milk Agric. Food Chem. 2015, 63, 2, 588-592
256. Bar Yamin H, Barnea M, Genzer Y, Chapnik N, Froy O. Long-term commercial cow’s milk consumption and its effects on metabolic parameters associated with obesity in young mice. Mol Nutr Food Res. 2014;58:1061–1068. doi: 10.1002/mnfr.201300650
257. Manca S, Upadhyaya B, Mutai E, Desaulniers AT, Cederberg RA, White BR, et al. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep. 2018;8:11321.
258. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, et al. Exosome delivered anticancer drugs across the blood–brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32:2003–2014.
259. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions Izumi, H.; Kosaka, N.; Shimizu, T.; Sekine, K.; Ochiya, T.; Takase, M. Journal of Dairy Science (2012), 95 (9), 4831-4841CODEN: JDSCAE; ISSN:0022-0302.
260. Yu B, Lv X, Su L, Li J, Yu Y, Gu Q, et al. MiR-148a functions as a tumor suppressor by targeting CCK-BR via inactivating STAT3 and Akt in human gastric cancer. PLoS ONE. 2016;11:e0158961. doi: 10.1371/journal.pone.0158961.

 

O negatywnych własnościach mleka zobacz jeszcze popularny artykuł
https://dziecisawazne.pl/10-powodow-dlaczego-nie-warto-pic-mleka/
chociaż ... to nie do końca tak...
Oraz książki:
Pij mleko będziesz chory. Cała prawda o nabiale, przyswajaniu wapnia i chorobach, które może spowodować jedzenie produktów mlecznych. Autor: Alissa Hamilton

Z daleka od mleka Cała prawda o szkodliwości mleka zwierzęcego i jego przetworów.
Autor: Bożena Przyjemska. Wyd. Vital .

PS. kto pamięta świeże mleko w butelkach szklanych stawiane codziennie rano przed mieszkaniami w blokach za PRL?

PS2. czy widziałeś Nowości?

 

 

 



Wyszukiwarka
lokalna

na dole strony
Także w Komunikaty

Zapisz się na 
Biuletyn

(Twoje dane sa całkowicie bezpieczne,
za zapis -
upominek)

 

Twoja Ochrona Medyczna
Twoja Super Ochrona Medyczna

 Zdrowie i Fitness
Zobacz na Facebook'u

kawa dla zdrowia

Zdrowie ze ^ smakiem

Zdrowy biznes

 

  Widge

 

Otwórz serce

Share

Follow etsaman2 on Twitter

 

 

 


                    Wyszukiwarka lokalna Umożliwia wyszukiwanie wg stopnia dopasowania lub dat (patrz opcje wyników po wyświetleniu). 
                    Google aktualizuje swe indeksowane zasoby co pewien czas, zatem nie zawsze to, co się pokaże jest aktualne. Zawiera reklamy Google
.
  

                         Copyright Leszek Korolkiewicz 2007-19    admin( @ )lepszezdrowie.info   Zastrzeżenie i Polityka Prywatności 
                     Na tej stronie wykorzystujemy tzw. ciasteczka - małe pliki tekstowe (ang. cookies), dzięki którym nasz serwis może działać lepiej. W każdej chwili możesz wyłączyć ten mechanizm w ustawieniach swojej przeglądarki.  
                        
Korzystanie z naszego serwisu bez  zmiany ustawień dotyczących cookies, umieszcza je w pamięci Twojego urządzenia. Patrz Zastrzeżenie.